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Effect of Solvation upon 
Carbonyl Substitution Reactions 

Sir: 

Extensive mechanistic studies have established that alkaline 
hydrolysis of esters and transesterification proceed by attack 
of the nucleophile at the carbonyl carbon to form a tetrahedral 
intermediate followed by cleavage of the acyl-oxygen bond 
( B A C 2 ) (eq I).1 In addition to the direct evidence2 which has 

O 

R1 "O" + R'COR" 

O" 

R'—C—OR" 

O 

R'CwOR + R"CT (1) 

been obtained by studies with 18O, ester hydrolysis occurs at 
a rate which is unreasonably fast for an alternate mechanism, 
such as an S N 2 reaction at the alkyl carbon atom to produce 
alkyl-oxygen cleavage. These results are usually interpreted 
to mean that the carbonyl carbon atom is much more suscep­
tible to nucleophilic attack than the alkyl carbon atom. 

Recently, reactions of this type have been studied in the gas 
phase to elucidate how solvation effects nucleophilic reactivity. 
A surprising result of this work is that other reaction channels 
become competitive or dominant over the BAC2 mechanism.3 

For example, in the absence of solvation, the reaction of deu-
teriomethoxide with methyl benzoate produces only benzoate 
(by the S N 2 mechanism) (eq 2).4 Even attachment of elec-

0 

Cl)3O" + C6H5COCH, 

O 

C6H5CO" + CD3OCH3 (2) 

tron-withdrawing groups to the carbonyl carbon fails to acti­
vate the carbonyl sufficiently to compete with the S N 2 
channel. 

These discrepancies between the mechanisms in the gas 
phase and in solution prompted us to examine reactions of 
phenyl acetate with various nucleophiles. Phenyl acetate was 
chosen because it appeared to be a likely substrate for observing 
the BAC2 mechanism in the gas phase. Presumably the S N 2 
channel would be shut off because this would require nucleo­
philic aromatic substitution upon an unactivated benzene ring, 
and phenoxide would be expected to enhance the probability 
of the BAC2 mechanism because it is a good leaving group. 
Using methoxide ion as an example, there are four possible 
reactions with phenyl acetate (Scheme I). Our estimates of the 
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exothermicity for each channel are shown at the far right side.5 

On the basis of the thermochemistry, channel 1 (BAc2), 
channel 2 (n-proton abstraction), and channel 3 (S^2) are 
allowed. The large endothermicity for channel 4 ($ elimina­
tion) removes it as a possibility because the reaction would be 
far too slow to be observed. Channel 2 is unusual from the point 
of view of solution chemistry; however, it is allowed in the gas 
phase because hydrogens a to a carbonyl group are more acidic 
than aliphatic alcohols.9 Furthermore, since the only previous 
report of gas-phase nucleophilic aromatic substitution showed 
the rate to be very slow,10 we expected carbonyl attack 
(channel 1) or proton abstraction (channel 2) to be the most 
likely reactions. 

We have recently studied the gas-phase reactions of phenyl 
acetate with various nucleophiles using a pulsed ion cyclotron 
resonance (ICR) spectrometer," and, surprisingly, the only 
reaction observed is channel 3, where X - = O H - , C H 3 O - , 
C N - , S H - , C H 3 S - , or C 6 H 5 O-. The rate constants deter­
mined for the various nucleophiles are all close to the diffu­
sion-controlled limit and range from 3 to 8 X 1O -10 cm3 mol­
ecule -1 s - 1 . Neither the expected product of the BAC2 channel, 
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phenoxide at m/e 93 - , nor the M — 1 ion of phenyl acetate at 
m/e 135- was observed within the detection limits of the 
spectrometer. This means that the rate constants for channels 
1 and 2 must be at least one hundred times smaller than for 
channel 3. These results demonstrate that nucleophilic aro­
matic substitution can be a facile process in the gas phase and 
that for some reason attack at the carbonyl is not observed in 
spite of its large exothermicity. 

Because of this striking difference between solution and 
gas-phase reactivity, we decided to explore the effect of a sol­
vent molecule on the reactivity of the nucleophile. Partially 
solvated nucleophiles were formed by reacting X - with methyl 
formate (reaction 4), where X - = OH - or CH3O -, as reported 

X" + HCOCH0 — X-- -HOCH3 + CO (4) 

previously.12 To make HS -- -HOCH3 cluster ion, H2S was 
reacted with CH3O -- -HOCH3 to displace methanol. Much 
to our surprise, phenoxide ion at m/e 9 3 - was observed as a 
product for the reactions of the cluster ions shown in Scheme 
II. These reactions were confirmed by ICR double resonance 
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ejection of the cluster ions.13,14 Thus, reaction at the carbonyl 
via the BAc2 mechanism appears to be greatly enhanced by 
a single solvent molecule attached to the nucleophile. Solvated 
phenoxide ions are not observed. This is probably due to the 
large exothermicity of the reactions. It has not been possible 
to determine if the cluster ions also react via the SN2 mecha­
nism, since the phenoxide product reacts further with phenyl 
acetate to produce acetate. 

These studies have demonstrated for the first time that a 
single solvent molecule clustered to a nucleophile can drasti­
cally change the reaction pathway.15 It appears that, in the gas 
phase, charge-dispersed transition states such as in the SN2 
mechanism have lower kinetic barriers than charge-localized 
transition states such as in the tetrahedral intermediate of the 
BAC2 mechanism. As a way of explaining out results, the sol­
vent molecule in the cluster ion may be effective in dispersing 
the charge on the carbonyl oxygen of the tetrahedral inter­
mediate to facilitate the BAC2 channel. This is consistent with 
solution behavior where polar transition states are favored. 
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Micellar Stereoselectivity. Cleavage of Diastereomeric 
Substrates by Functional Surfactant Micelles 

Sir: 

In the cleavage of appropriate substrates, proteolytic en­
zymes exhibit high kinetic efficiency and stereospecificity. 
State of the art micellar biomimesis has made substantial 
progress in the development of kinetically potent, functional 
surfactant esterolytic reagents,1 ~3 but considerably less success 
has attended the development of stereoselective reagents. In­
deed, stereoselectivity in aqueous micelles is rare for any kind 
of reaction. 

The stereochemical courses of the nitrous acid deamination 
of aminoalkanes4 or of alkylsulfonate solvolyses5 can be 
modestly modified in aqueous micelles, and various hydride 
transfers to certain ketones in (chiral) sodium cholate or 
quaternary ammonium ion micelles afford chiral alcohols (but 
in <2% optical yields).6 /- and d-p-nitrophenyl a-methoxy-
phenylacetate were reported to differ by ~11% in esterolytic 
rate constants when solubilized in /-./V-n-dodecyl-iV-meth-
ylephedrinium bromide micelles;7 similar experiments in d-
or /-N-a-methylbenzyl-A^TV-dimethylcetylammonium bro­
mide micelles afforded little or no enantioselectivity.8 Even 
kinetically more potent, head group functionalized micellar 
reagents bearing alanine,9 histidine,9 or cysteine10 moieties 
were not enantioselective in the cleavage of D- or L-A'-acetyl-
phenylalaninep-nitrophenyl esters (7V-Ac-Phe-PNP). Here­
tofore, the sole, significant enantioselectivity result in micellar 
esterolysis has been a 3:1 preference for the cleavage of L- over 
D-/V-Ac-Phe-PNP, exhibited by a surfactant derived from 
coupling L-histidine methyl ester to 5-carboxyheptadecyltri-
methylammonium chloride.11 

We now report (a) that the dipeptide diastereomeric sub­
strates, LL- and DL-Ar-carbobenzyloxyalanylprolinep-nitro-
phenyl ester (I), are stereoselectively cleaved by a variety of 
functional surfactants, affording examples of the largest mi­
cellar stereoselectivities yet encountered; (b) that both binding 
and functionalization are essential to the expression of sub­
stantial stereoselectivity; and (c) that the chirality of the 
substrates, rather than chirality of the surfactants, is the key 
feature. 

LL- and DL-I were synthesized by the ethyl chloroformate 
mediated coupling of L- or D-Z-alanine to L-proline p-nitro-
phenyl ester in cold CH2CI2. The dipeptides were obtained in 
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